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ABSTRACT

Work on security vulnerabilities in software has primarily
focused on three points in the software life-cycle: (1) finding
and removing software defects, (2) patching or hardening
software after vulnerabilities have been discovered, and (3)
measuring the rate of vulnerability exploitation. This paper
examines an earlier period in the software vulnerability life-
cycle, starting from the release date of a version through to
the disclosure of the fourth vulnerability, with a particular
focus on the time from release until the very first disclosed
vulnerability.

Analysis of software vulnerability data, including up to
a decade of data for several versions of the most popular
operating systems, server applications and user applications
(both open and closed source), shows that properties ex-
trinsic to the software play a much greater role in the rate
of vulnerability discovery than do intrinsic properties such
as software quality. This leads us to the observation that
(at least in the first phase of a product’s existence), soft-
ware vulnerabilities have different properties from software
defects.

We show that the length of the period after the release of
a software product (or version) and before the discovery of
the first vulnerability (the ’Honeymoon’ period) is primarily
a function of familiarity with the system. In addition, we
demonstrate that legacy code resulting from code re-use is
a major contributor to both the rate of vulnerability dis-
covery and the numbers of vulnerabilities found; this has
significant implications for software engineering principles
and practice.

1. INTRODUCTION
Software vulnerabilities are the root cause of many secu-

rity breaches, so understanding software systems is essential
to developing models for how and when to invest effort in
securing software. The most important software systems to
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understand are those of large scale and those in wide use.
Since almost all software systems today are large and com-
plex, we can focus our attention on those in wide use. Rang-
ing from document preparation programs to web browsers
and operating systems, such systems can each comprise mil-
lions of lines of source code, a very rough measure of software
complexity. Given the importance of such systems, models
for their creation, use, maintenance and upgrades - their
“life-cycle” - are clearly necessary.

Figure 1: Bugs per month, Left:Figure 11.2 from
“The Mythical Man Month”, Right: Security vul-
nerabilities per month

Models are useful in estimating project costs and timing.
For example, if a model predicts that the bug discovery rate
drops rapidly after an initial flurry of discoveries, this fact
can be used to determine when software is ready for release:
once the rate has reached an acceptable level, the software
can be shipped. Such estimation can have significant eco-
nomic effects upon an enterprise: ship too early and pay
a price in service calls; ship too late and potentially lose
customers who might look elsewhere. A powerful predictive
model can therefore be worth significant amounts of revenue,
as it allows trading development costs and time against a
combination of sales revenue and maintenance costs.

Software Reliability Models (SRMs) are primarily con-
cerned with increasing the quality of the code by predicting
and locating software defects. A major assumption made
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by SRMs is that software is released with some number of
defects that can be categorized based on how easy each is
to find. A further assumption is made that the easy-to-find
defects are discovered and fixed early in the software life-
cycle, quickly leading to a state where only difficult-to-find
vulnerabilities are left and the software can be considered
reliable. Figure 11.2 from Brooks [5] is reproduced on the
left of Figure 1 to illustrate this point.

Software Vulnerability Discovery Models (VDMs) resem-
ble SRMs, but VDMs focus predominantly on predicting
attacks against mature software systems. VDMs rely on the
intrinsic qualities of the software for a measure of its initial
security. For a VDM the expectation is that the low-hanging
fruit vulnerabilities are found quickly and patched. The re-
maining vulnerabilities (which are increasingly difficult to
find) are presumed to take much longer to discover, and the
software is considered “secure”. A VDM with those expec-
tations would predict that vulnerabilities are found fastest
shortly after the release of a product, and the rate of dis-
covery decreases thereafter.

The implications of such a VDM are significant for soft-
ware security. It would suggest, for example, that once the
rate of vulnerability discovery was sufficiently small, that the
software is “safe” and needs little attention. It also suggests
that software modules or components that have stood this
“test of time” are appropriate candidates for reuse in other
software systems. If this VDM model is wrong, these impli-
cations will be false and may have undesirable consequences
for software security.

Unlike much of the previous work [25, 2, 28] which focused
on understanding time to exploit after a vulnerability has
been discovered, this paper focuses on measuring time to
vulnerability discovery.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our unique dataset of vulnerabilities, cover-
ing several versions of the most popular software products,
operating systems, server applications and user applications.

In Section 3 we analyze this data, which show that the
period between the release date of a product and its very
first 0-day vulnerability is considerably longer than the mean
time between the first vulnerability and second or between
the second and the third. We call this unexpected grace
period the honeymoon effect and believe it to be important,
because these numbers challenge our expectations and intu-
ition about the effect of software quality on security. The
interval between software release and the discovery of it’s
first 0-day vulnerability also appears to be a strong predic-
tor of the arrival rate of subsequent vulnerability discoveries.

The honeymoon effect also illustrates another incompat-
ibility between current software engineering practices and
security: the effect of code reuse. “Good programmers write
code, Great programmers reuse ” is a well-known aphorism,
and the assumption made is that reusing code is not only
more efficient, but since the code has already been deployed
successfully, it is more reliable and therefore, by implication,
also more secure. In Section 4 our data again show this is
not the case.

We set our results in the context of prior work in Section
5 and conclude the paper by summarizing our claims and
discussing the implications for engineering secure software
systems in Section 6.

2. OUR DATASET

In this paper, we are concerned specifically with the early
post-release vulnerability life-cycle for modern, mass mar-
ket software, including operating systems, web clients and
servers, text and graphics processors, server software, and
so on.

Our analysis focuses on publicly distributed software re-
leased between 1999 and 2007. (2007 is the latest date for
which complete vulnerability information was reliably avail-
able from various published data sources). We included both
open and closed source software.

To encompass the most comprehensive possible range of
relevant software releases, we collected data about all re-
leased versions of the major operating systems (Windows,
OS X, Redhat Linux, Solaris, FreeBSD), all released ver-
sions of the major web browsers (Internet Explorer, Firefox,
Safari), and all released versions of various server and end
user applications, both open and closed source. The server
and user applications were based on the top 25 downloaded /
purchased / favorite application identified in lists published
by ZDNet, CNet, and Amazon, excluding only those appli-
cations for which accurate release date information was un-
available or that were not included in the vulnerability data
sources described below. In total, we were able to compile
data about 38 of the most popular and important software
packages.

For each software package and version during the period
of our study, we examined public databases, product an-
nouncements, and published press releases to assign each
version a release date. For the period of versions (1990-
2007) and for the period of vulnerabilities (1999-2008), we
identified 700 distinct released versions (’major’ and ’minor’)
of the 38 different software packages.

We then compiled a dataset of more than 30,000 exploitable
vulnerabilities that were disclosed during the period under
analysis (January 1999 through January 2008). Our baseline
sources were publicly available databases from the National
Vulnerability Database (NVD) [23] and from the Common
Vulnerabilities and Exposures (CVE) [9] initiative that feeds
NVD. (For each vulnerability, NVD provides a publication
date, a short description, a risk rating, references to original
sources, and information on the vendor, version and name of
the product affected.) We also downloaded, parsed, and cor-
related the information from over 200,000 individual secu-
rity bulletins from several “Security Information Providers”
(SIPs), choosing the set of SIPs based on criteria such as in-
dependence, accessibility, and available history of informa-
tion. Ultimately, we processed all security advisories from
the following seven SIPs: Secunia, US-CERT, SecurityFo-
cus, IBM ISS X-Force, SecurityTracker, iDefense’s (VPC),
and TippingPoint(ZDI) [29, 33, 30, 14, 34, 31, 15, 32].

For this study, we selected from these bulletins and database
entries bugs identified as exploitable vulnerabilities that ren-
der the software vulnerable to actual attack and for which a
practical exploit has been demonstrated. We then calculated
the initial disclosure date for each exploitable vulnerability
to be the earliest calendar day on which information on a
specific vulnerability is made freely available to the public
in a consistent format by some recognized published source
[11]. To help ensure accuracy, we manually checked and cor-
rected over 3,000 instances of software version information
for the specific product versions under analysis in this paper
to normalize for inconsistencies in NVD’s vulnerability to
product mapping.
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3. THE HONEYMOON EFFECT
Virtually all mass-market software systems undergo a lengthy

period, after their release, during which end-users discover
and report bugs and other deficiencies. Most software sup-
pliers (whether closed-source or open-source) build into their
life-cycle planning a mechanism for reacting to bug reports,
repairing defects, and releasing patched versions at regular
intervals. The number of latent bugs in a particular version
of a given version of a given piece of software thus tends to
decrease over time, with the initial, unpatched, release suf-
fering from the largest number of defects. (This excludes, of
course, defects introduced by patches, which are a minority
in practice). In systems where bugs are fixed in response
to user reports, the most serious and easily triggered bugs
would be expected to be reported early, with increasingly es-
oteric defects accounting for a greater fraction of bug reports
as time goes on.

Empirical studies in both the classic [5] and the current
[16] software engineering literature have shown that, indeed,
this intuition reflects the software life-cycle well (see Fig-
ure 2). Invariably, these and other software engineering
studies have shown that the rate of bug discovery is at
its highest immediately after software release, with the rate
(measured either as inter-arrival time of bug reports or as
number of bugs per interval) slowing over time.

Note that some (but not all) of the bugs discovered and
repaired in this process represent security vulnerabilities; in
security parlance a vulnerability that allows an attacker to
exploit a newly discovered, previously unknown bug is called
a 0-day vulnerability. Virtually all software vendors give
high priority to repairing defects once a 0-day exploit is dis-
covered.

It seems reasonable, then, to presume that users of soft-
ware are at their most vulnerable, with software suffering
from the most serious latent vulnerabilities, immediately af-
ter a new release. That is, we would expect attackers (and
legitimate security researchers) who are looking for bugs to
exploit to have the easiest time of it early in the life cy-
cle. This, after all, is when the software is most intrinsically
weak, with the highest density of ”low hanging fruit” bugs
still unpatched and vulnerable to attack. As time goes on,
after all, the number of undiscovered bugs will only go down,
and those that remain will presumably require increasing ef-
fort to find and exploit.

In other words, to the extent that security vulnerabilities
are a consequence of software bugs, conventional software
engineering wisdom tells us to expect the discovery of 0-day
exploits to follow the same pattern as other reported bugs.
The pace of exploit discovery should be at its most rapid
early on, and slowing down as the software quality improves
and the ”easiest” vulnerabilities are repaired.

But our analysis of the rate of the discovery of exploitable
bugs in widely-used commercial and open-source software,
tells a very different story than what the conventional soft-
ware engineering wisdom leads us to expect. In fact, new
software overwhelmingly enjoys a honeymoon from attack
for a period after it is released. The time between release
and the first 0-day vulnerability in a given software release
tends to be markedly longer than the interval between the
first and the second vulnerability discovered, which in turn
tends to be longer than the time between the second and the
third. That is, when the software it at its weakest, with the
”easiest” exploitable vulnerabilities still unpatched, there is

Figure 3: The Honeymoon Period, both Positive and
Negative time-lines

a lower risk that this will be discovered by an actual attacker
on a given day than there will be after the vulnerability is
fixed!

3.1 The Honeymoon Effect and Mass-Market
Software

For the purposes of this paper, we define the first (publicly
reported) exploitable vulnerability as the primal vulnerabil-
ity, we define a software release as experiencing a positive
honeymoon if the interval p0 between the (public) release of
the software and the primal vulnerability in the software is
greater than the interval p0+1 between the primal vulner-
ability and the second(publicly reported) vulnerability.(see
Figure 3) We will refer here to the interval p0 as the honey-
moon period and the ratio p0/p0+1 as the honeymoon ratio.
In other words, a software release has experienced a positive
honeymoon when its honeymoon ratio > 1.

We examined 700 software releases of the most popular re-
cent mass-market software packages for which release dates
and vulnerability reports were available (see Section 2). In
431 of 700 (62%) of releases, the honeymoon effect was pos-
itive. Most notably, the median overall honeymoon ratio
(including both positive and negative honeymoons) p0/p0+1

was 1.54. That is, the median time from initial release and
the primal vulnerability is 1 1/2 times greater than the time
from primal to the discovery of the second. The honeymoon
effect is not only present, it is quite pronounced, and the ef-
fect is even more pronounced when we exclude minor version
updates and focus on major releases. For major releases, the
honeymoon ratio(including both positive and negative hon-
eymoons) rises to 1.8.

Remarkably, positive honeymoons occur across our entire
dataset for all classes of software and across the entire pe-
riod under analysis. The honeymoon effect is strong whether
the software is open- or closed- source, whether it is an OS,
web client, server, text processor, or something else, and re-
gardless of the year in which the release occurred.(see Table
1)

Although the honeymoon effect is pervasive across the en-
tire dataset, one factor appears to influence its length more
than any other: the re-use of code from previous releases,
which, counter-intuitively, shortens the honeymoon. Soft-
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Figure 2: Current Software Engineering literature supports the Brooks life-cycle model - image taken from
“Post-release reliability growth in software products”, ACM Trans. Softw. Eng Methodol. 2008 see references

Table 1: Percentages of Honeymoons by Year

Year Honeymoons

1999 56%

2000 62%

2001 50%

2002 71%

2003 53%

2004 49%

2005 66%

2007 58%

ware releases based on ”new” code have longer honeymoons
than those that re-use old code. We discuss this in detail in
the following sections.

3.2 Honeymoons in Different Software Envi-
ronments

The number of days in the honeymoon period varies widely
from software release to software release, and ranged from
a single day to over three years in our dataset. The length
of the honeymoon presumably varies due to many factors,
including the intrinsic quality of the software and extrinsic
factors such as attacker interest, familiarity with the system,
and so on.

To ”normalize” the length of the honeymoon for these
factors to enable meaningful comparisons between different
software packages, the honeymoon ratio – the ratio of the
time between release and the discovery of the first exploit
and the time between the discovery of the first and the sec-
ond – may be more revealing, since time to the second vul-
nerability discovery occurs in exactly the same software.

The median number of days in the honeymoon period
across all 700 releases in our dataset was 110. The median
honeymoon ratio across all releases is 1.54.

The honeymoon ratio remained positive in virtually all
software packages and types. The effect is weaker, but also
occurred, between the primal and second and second and
third reported vulnerabilities, depending on the particular
software package.

Figure 4 shows the median honeymoon ratio (and the
median ratios for the intervals between the second, third
and fourth vulnerabilities) for each operating system in the
dataset. Figure 5 shows the median honeymoon ratio of
servers, and Figure 6 shows end-user applications.

3.3 Open vs. Closed Source
The honeymoon effect is strong in both open- and closed-

source software, but it manifests itself somewhat differently.
Of the 38 software systems we analyzed, 13 are open-

source and 25 are closed-source. But of the 700 software
releases in our dataset 171 were for closed-source systems
and 508 were for open source. Open-source packages in our
dataset issued new release versions at a much more rapid
rate than their closed source counterparts.

Table 2: Median Honeymoon Ratio for Open and
Closed Source Code

Type Honeymoon Days Ratios

Open Source 115 1.23

Closed Source 98 1.48

Yet in spite of its more rapid pace of new releases, open
source software releases enjoyed a significantly longer me-
dian honeymoon before the first publicly exploitable vulner-
ability was discovered: 115 days, vs. 98 days for closed-
source releases.(see Table 2)

The median honeymoon ratio, however, is shorter in open-
source than in closed. The median ratio for all open-source
releases was 1.23, but for closed source it was 1.48. Figure 7
shows the median honeymoon ratios for various open-source
systems, and Figure 8 shows the median ratios for closed-
source systems.
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Figure 6: Honeymoon ratios of p0/p0+1, p0+1/p0+2 and
p0+2/p0+3 for common user applications

The longer honeymoon period with a shorter honeymoon
ratio for open-source software suggests that it not only takes
longer for attackers to find the initial bugs in open-source
software, but that the rate at which they ”climb the learn-
ing curve” does not accelerate as much over time as it does
in closed-source systems. This may be a surprising result,
given that attackers do not have the opportunity to study
the source code in closed-source systems, and suggests that
familiarity with the system is related to properties extrinsic
to the system and not simply access to source code.

4. THE HONEYMOON EFFECT AND PRI-

MAL VULNERABILITIES
To more fully understand the factors responsible for the

honeymoon effect, we examined the attributes of a particular
set of primal vulnerabilities. In this section we compare
the honeymoon periods of this set and show that primal
vulnerabilities are not a result of “low-hanging fruit”, and
that other extrinsic properties must apply.

It is well known that as complex software evolves from one
version to the next, new features are added, old ones dep-
recated and changes are made, but throughout its evolution
much of the standard code base of a piece of software remains
the same. One reason for this is to maintain backward com-
patibility, but an even more prevalent reason is that code
re-use is a primary principle of software engineering [18, 5].

In Milk or Wine [25] Ozment et al measured the portion
of legacy code in several versions of OpenBSD and found
that 61% of legacy (their term is ’foundational’) code was
still present 15 releases (and 7.5 years) later. This legacy
code accounted for 62% of the total vulnerabilities found.
While it is not possible to measure the amounts of legacy
code from version to version in closed source products as
it is for open source, it is well known that the major ven-
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Figure 8: Ratios of p0/p0+1 to p0+1/p0+2 and p0+2/p0+3

for closed source applications

dors strongly encourage code re-use among their collaborat-
ing developers [19], and more importantly, it is possible to
measure the numbers of legacy vulnerabilities. By compar-
ing the disclosure date of a vulnerability with the release
dates and product version affected, it is possible to deter-
mine which vulnerabilities discovered in the current release
result from earlier versions. For example, if a vulnerability
V affects versions (k,...N) (0<k<N) of a product, but not
versions (1,...,k-1) and was disclosed after the release date
of version N, we know that the vulnerability was introduced
into the product with version k, and that it stayed hidden
until its discovery after the release of version N. We call
these regressive vulnerabilities as they are those vulnerabil-
ities which are not found through normal regression testing
and may lie dormant through more than one version re-
lease(sometimes for years).1 For the purposes of this paper,
we define a regressive vulnerability as a primal vulnerability
that was discovered to affect not only version N in which
it was found, but also affect one or more earlier versions (
versions N-1, N-2,...,1.0)

Figure 9: Regressive Vulnerability timeline

On the other hand, a progressive vulnerability is primal
vulnerability which is discovered in version N and does not
affect version N-1 or any earlier versions. A progressive vul-
nerability indicates that the vulnerability was introduced
with the new version N. (see Figure 9)

Figure 10 shows that legacy vulnerabilities2 make up a
significant percentage of vulnerabilities across all products,
e.g. 61% of the Windows Vista vulnerabilities originate in
earlier versions of the OS, 40% of which originate in Win-
dows 2000 released seven years earlier. This analysis shows
that vulnerabilities are typically long-lived and can survive
over many years and many product versions until discovered.

In order to ascertain whether regressive vulnerabilities
could be the result of code reuse rather than configuration
or implementation errors, we manually checked the NVD
database description and the original disclosure sources for
information regarding the type of vulnerability. We found
that 92% of the regressive vulnerabilities were the result of
code errors (buffer overflows, input validation errors, excep-
tion handling errors) which strongly indicates that a vulner-
ability that affects more than one version of a product is
most likely a result of legacy code shared between versions.
We removed the vulnerabilities which are the result of im-
plementation or configuration errors from our dataset and
focused exclusively on code errors.

4.1 Regressive Vulnerabilities
1In OpenBSD, Ozment et al states ”It took more than two
and a half years for the first half of these ... vulnerabilities
to be reported.” [25].
2including both regressives and progressives
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Figure 10: Proportion of legacy vulnerabilities in
Windows OS

If code reuse and an attacker’s familiarity with the sys-
tem has an effect on the rate of vulnerability discovery, then
when one examines the primal vulnerabilities, one should
expect to see that regressive vulnerabilities make up a sig-
nificant percentage of them. And indeed, after examining all
the primal vulnerabilities in our data set, we find that 77%
of them are regressive. (ie, 77% of the primals were found
to also affect earlier versions ). Table 3 lists the percentages
of regressives for all, open source, closed source primals. Ta-
ble 3 also shows that the percentage of regressives is even
higher for open source primals (rising up to 83%), and lower
for closed source (59%). The high percentage of regressive
vulnerabilities is surprising, because it shows that the ma-
jority of primal vulnerabilities, (the first vulnerability found
after a product is released), are not the easy to find “low-
hanging fruit” one would expect from conventional software
engineering defects, instead these regressives lay dormant
throughout the life-time of their originating release (and pos-
sibly several subsequent releases). If these regressives had
been easy to find, then presumably, they would have been
found in the version in which they originated.

Table 3: Percentages of Regressives and Regressive
Honeymoons for all Primal Vulnerabilities
Type Total Regressives Total Regr. Honeymoons

ALL 77% 62%

Open Source 83% 62%

Closed Source 59% 66%

4.2 The Honeymoon Effect and Regressive Vul-
nerabilities

Another unexpected finding is that regressive vulnerabil-
ities also experience the honeymoon effect. Because regres-
sive vulnerabilities have been lying dormant in the code for
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Figure 11: Honeymoon ratios of p0/p0+1, p0+1/p0+2

and p0+2/p0+3 for common user applications

more than one release, and because the attackers have had
more time to familiarize themselves with the product, it
seems reasonable to presume that the first of these vulner-
abilities would be found in a shorter amount of time than
time to find the second vulnerability (whether regressive or
progressive). But, our analysis shows this isn’t the case. The
second column of Table 3 lists the percentages of regressives
that were also honeymoons. In each case whether we looked
at all regressives combined, only open source or only closed
source, the percentages of honeymoons is in the low to mid
60th percentile - almost the same as the total honeymoon
effect for all regressives and progressives combined. Closed
source does exhibit a slightly longer honeymoon effect, but
not significantly so. The existence of regressive honeymoons,
especially in such high proportions indicates that proper-
ties extrinsic to the quality of the code, in particular an
attacker’s familiarity with the system play a much greater
role early on in the life-cycle of a release than previously
expected.

4.3 Regressives vs. Progressives
The strong presence of the honeymoon effect even among

regressive vulnerabilities leads us to wonder what if any ef-
fect regressives might have on the length of the honeymoon
period. Yes, regressive vulnerabilities experience a honey-
moon, but is it longer or shorter than the honeymoon for
progressive vulnerabilities? The honeymoon ratio provides
insight into the length of the honeymoon period. Figure 11
shows the median honeymoon ratios for regressives (all, open
and closed), progressives (all, open and closed), for the vul-
nerabilities p0/p0+1, through p0+2/p0+3. The median hon-
eymoon ratio for regressive vulnerabilities is lower than that
for progressives. In fact, the honeymoon ratio for progres-
sive vulnerabilities is almost twice as long. This strongly
suggests that familiarity with the system is a major con-
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tributor to the time to first vulnerability discovery. Inter-
estingly, it doesn’t seem to have a significant effect on open
source code, but closed source does seem to have a longer
honeymoon period, even for regressives. In other words, fa-
miliarity shortens the honeymoon.

4.4 Less than Zero Days

Table 4: Percentages of Primals that are Less-than-
Zero (released vulnerable to an already existing ex-
ploit) and the new expected median time to first
exploit, for all products, Open source and Closed
Source
Type Percentages Median Honeymoon Period

ALL 21% 83

Open Source 18% 89

Closed Source 34% 60

Dormant vulnerabilities are not the only cause of 0-days.
Legacy vulnerabilities result in a second category of regres-
sive 0-days for which there can be no honeymoon period.
These Less-than-Zero days occur when a new version of a
product is released vulnerable to a previously disclosed vul-
nerability. For example, the day Windows 7 was officially
released, it was discovered that it was vulnerable to several
current prominent viruses which had originally been crafted
for Windows XP [35] Our research shows that less-than-zero
days account for approximately 21% of the total legacy vul-
nerabilities found, with closed source code containing the
most (34%)(see Table 4). In all cases the median number
of days to first exploit is reduced by approximately 1/3 and
the median honeymoon ratio drops from 1.54 to 1.0. From
this we conclude that not patching vulnerabilities has a sig-
nificant negative effect on the honeymoon period. Of course
there is no way to measure exactly when an attacker is likely
to test an existing exploit against a newly released prod-
uct however, the Sophoslabs [35] tests are indicative of how
quickly a vendor might expect attackers to act.

5. RELATED WORK
As noted in the Introduction, both the scale of modern

software systems and the scale of their deployment have
made software design and engineering the focus of signifi-
cant attention from scientists and engineers.

Brook’s ”The Mythical Man-Month” [5] is a bedrock ref-
erence for both the problems that the software engineering
discipline is intended to address and its collected data (al-
beit from the 1960s) in support of its cogent observations.
As Brooks addresses the issues in successfully engineering
large software systems his focus is software defects (”bugs”)
rather than software security vulnerabilities. His analyses
of the management issues in software engineering, particu-
larly factors to account for in scheduling, still hold true. For
example, the discussion of ”Regenerative Schedule Disaster”
(particularly Fig. 2.8, illustrating the added cost for train-
ing time) lends support to our observations about the time
required to gain familiarity with a software system. Brook’s
Figure 11.2, ”Bug occurrence as a function of release age”,
reproduced here on the left of Figure 1, shows an interval
of decrease in bugs found, slowing to some minimum rate,
followed by a slow rise in the rate of bugs found. This shows

the effects of increased familiarity with a software system.
As do many software engineering scholars, Brooks empha-
sizes the positive aspects of reusable software components
without discussion of the potential risks from malicious ac-
tors.

Software reliability analysis is crucial to commercial firms
which must deliver reliable software in a timely manner. A
number of software reliability [21, 12, 27, 22] models have
been developed, with a focus on bug rates and their impli-
cations for software maturity and releasability. The models,
testing [26] and data collections do not address malicious
actors.

Arbaugh, et al. [2] initiated the study of the more spe-
cialized software vulnerability life-cycle, with a particular
focus on the intervals of time between when a vulnerability
is known and when a software system is updated to remove
the vulnerability. It is important to note, that these works
focused on rate of exploitation, while this paper focuses on
rate of vulnerability discovery.

Work by Jonsson, et al. [17] provides observations on a
user population of students with quantitative evaluation of
behavioral hypotheses, of which the most interesting to us
is the ability to find bugs rapidly once the price is paid (in
time) of learning the software system.

Alhamzi, et al [1] studied Windows 98 and Windows NT
4.0 and proposed a 3-phase S-shaped model (AIM) to de-
scribe the rate of change of cumulative vulnerabilities over
time where the first phase includes time spent learning, but
Ozment’s analysis [24] of this and other vulnerability discov-
ery models showed that its predictive accuracy assumed a
static code-base and therefore was never tested against soft-
ware spanning multiple versions. Our analysis supports an
S-shaped curve model, but shows that the three phases in
the AIM model do not accurately describe the data we have
collected. Additionally, we are not concerned with the to-
tal number of vulnerabilities found over a product’s lifetime,
but with the first vulnerability found per version, as well as
with a comparison of the cumulative number of days between
vulnerabilities, particularly those closest to the product’s re-
lease date.

Recent studies of bugs or vulnerabilities in large open
source software systems [6, 25] did analyze vulnerability den-
sity across several versions and provide some data and obser-
vations that we believe support our hypothesis. First, since
the software systems under study are open source software
(e.g., Linux and OpenBSD) and readily available, they are
learn-able by an attacker with an appropriate expenditure
of time. Second, an analysis of bugs that persisted from
version to version showed that such bugs were often a con-
sequence of ”cut and paste” software engineering, a crude yet
effective form of software reuse. The majority of the exist-
ing vulnerability life-cycle and VDM research which makes
use of the NVD dataset focused primarily on a small num-
ber of operating systems or a few server applications and in
all but a few cases [25] only looked at one particular ver-
sion of each (e.g. Windows NT, Solaris 2.5.1, FreeBSD 4.0
and Redhat 6.2, or IIS and Apache). In particular, Ozment
and Schecter [25] found that 62% of the vulnerabilities in
OpenBSD v.2.3-3.7 came from legacy code, and concluded
that the original version of the source code may constitute
the bulk of the later version’s code base.

One large scale attempt to positively alter the rate of vul-
nerability discovery early on is Microsoft’s Security Devel-
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opment Lifecycle (SDL) which claims to have reduced the
numbers of vulnerabilities found in Windows Vista’s first
year compared with those found in Windows XP, which does
not use the SDL, (66 vs. 119) a 45% improvement. How-
ever, while Vista was in its first year, XP had been out
for 6 years. We believe this also supports our hypothesis,
especially since, in its first year, XP had only 28 vulnerabil-
ities [20], a difference of 58%. [23]

Code reuse continues to be considered an important part
of secure, efficient software development in both open and
closed products [13, 10, 4]. However, Coverity’s analysis
of the lessons learned after years of using their static code
analysis tool provides some possible explanations of the role
legacy code plays in the honeymoon effect. For example,
the authors list the most common response from software
developers after the discovery of 1000+ bugs: ”...The base-
line is to record the current bugs, don’t fix them, but do fix
any new bugs... A reasonable conservative heuristic is if you
haven’t touched the code in years, don’t modify it (even for
a bug fix) to avoid causing any breakage.” [3] This suggests
that an attacker familiar with the legacy code that has been
carried over into a newly released version would have an edge
in finding new vulnerabilities in it (the legacy code), and this
might have a negative effect on the honeymoon period.

In a recently published paper [28] the author analyzed the
risk of first exploitation attempt using a Cox proportional
model and concludes “that the exploitation process is accel-
erated for open source products”. The focus of the paper is
on measuring the rate of exploitation attempts, not on the
rate of vulnerability discovery and is therefore not relevant
to our paper.

6. DISCUSSION AND CONCLUSIONS
The software lifecycle has been repeatedly examined, with

the intent of understanding the dynamics of software pro-
duction processes, most particularly the arrival rate of soft-
ware faults and failures. These rates decrease with time as
updates gradually repair the errors as they are found, until
an acceptable error rate is achieved.

The software vulnerability lifecycle has been less exten-
sively studied, with most attention paid to the period af-
ter an exploit has been discovered. In attempting to un-
derstand the properties of vulnerability discovery, there are
two approaches we might have taken. One approach would
have been to study a single software system in depth, over
an extended period, draw detailed conclusions, and perhaps
generalize from them. Indeed, several of the related works
mentioned above try to do just that for the middle and end
phases of the lifecycle. But, another approach is to examine
a large set of software systems and try to find properties that
are true over the entire set and over an extended period.

We chose the latter approach for an number of reasons,
which include the following: This approach allowed us to in-
corporate both open and closed source systems in our analy-
sis, this approach also allowed us to analyze several different
classes of software (Operating Systems, Web Browsers User
applications, Server applications, etc), and this approach al-
lowed us to discover general vulnerability properties, e.g.
the honeymoon period, independent of the type of software,
and without requiring a detailed analysis of the properties
of each specific, individual vulnerability.

It might appear that given so many changes in tools, util-
ities, methodologies and goals used by both attackers and

defenders over the last decade, a long term analysis would
be inconsistent. To mitigate this we broke down each anal-
ysis by year and from version-to-version which are much
shorter time intervals, and we demonstrated the consistency
of this approach over time.

We also analyzed the role of legacy code in vulnerability
discovery and found surprisingly, based on a detailed study
of a large database of software vulnerabilities, that software
reuse may be a significant source of new vulnerabilities. We
determined that the standard practice of reusing code of-
fers unexpected security challenges. The very fact that this
software is mature means that there has been ample oppor-
tunity to study it in sufficient detail to turn vulnerabilities
into exploits.

There are multiple potential causal mechanisms that might
explain the existence of the honeymoon effect and the role
played by familiarity. One possibility is that a second vul-
nerability might be of similar type to the first, so that find-
ing it is fascilitated by knowledge derived from finding the
first one. A second possibility is that the methodology or
tools developed to find the first vulnerability lowers the ef-
fort required to find a subsequent ones. A third possible
cause might be that a discovered vulnerability would signal
weakness to other attackers (ie, blood in the water), causing
them to focus more attention on that area. [7]

The first two possible causes require familiarity with the
system, while the third is an example of properties extrinsic
to the quality of the source code that might affect the length
of the honeymoon period. An examination of these possible
causes will appear in future work.

The period between when the error rate is low enough for
release and attacker familiarity becomes high enough for an
initial 0-day vulnerability we have called the honeymoon and
its dynamics have been demonstrated in this paper to apply
to the majority of popular software systems for which we
had data.

The dynamics of the honeymoon effect suggest an inter-
esting tradeoff between decreasing error rate and increasing
familiarity with the software by attackers. This basic re-
sult has important implications for the arms race between
defenders and attackers.

First, it suggests that a new release of a software system
can enjoy a substantial honeymoon period without discov-
ered vulnerabilities once it is stable, independent of security
practices. Second, this honeymoon period appears to be a
strong predictor of the approximate upper bound of the vul-
nerability arrival rate. Third, it suggests (as hinted at by the
paper title) that attacker familiarity is a key element of the
software process dynamics, and this is a contraindication for
software reuse, as the greater the fraction of software reuse,
the smaller the amount of study required by an attacker.
Fourth, it suggests the need for more alternative approaches
to security software systems than simply trying to create
bug-free code.

In particular, research into alternative architectures or
execution models which focuses on properties extrinsic to
software, such as automated diversity, redundant execution,
software design diversity [8] might be used to extend the
honeymoon period of newly released software, or even give
old software a second honeymoon.
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